Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biomolecules ; 13(5)2023 05 11.
Article in English | MEDLINE | ID: covidwho-20239134

ABSTRACT

It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of ß-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.


Subject(s)
Alzheimer Disease , COVID-19 , Diabetes Mellitus , Metabolic Diseases , Neurodegenerative Diseases , Humans , AMP-Activated Protein Kinases/metabolism , Post-Acute COVID-19 Syndrome , TOR Serine-Threonine Kinases/metabolism , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Brain/metabolism
2.
Curr Neurovasc Res ; 2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2197764
6.
Curr Neurovasc Res ; 17(5): 765-783, 2020.
Article in English | MEDLINE | ID: covidwho-922756

ABSTRACT

Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.


Subject(s)
Circadian Clocks/genetics , Metabolic Diseases/genetics , Niacinamide/genetics , Sirtuin 1/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Humans , Metabolic Diseases/diagnosis , Metabolic Diseases/metabolism , Niacinamide/metabolism , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
Curr Neurovasc Res ; 17(3): 332-337, 2020.
Article in English | MEDLINE | ID: covidwho-215240

ABSTRACT

Multiple viral pathogens can pose a significant health risk to individuals. As a recent example, the ß-coronavirus family virion, SARS-CoV-2, has quickly evolved as a pandemic leading to coronavirus disease 2019 (COVID-19) and has been declared by the World Health Organization as a Public Health Emergency of International Concern. To date, no definitive treatment or vaccine application exists for COVID-19. Although new investigations seek to repurpose existing antiviral treatments for COVID-19, innovative treatment strategies not normally considered to have antiviral capabilities may be critical to address this global concern. One such avenue that may prove to be exceedingly fruitful and offer exciting potential as new antiviral therapy involves the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), and AMP activated protein kinase (AMPK). Recent work has shown that mTOR pathways in conjunction with AMPK may offer valuable targets to control cell injury, oxidative stress, mitochondrial dysfunction, and the onset of hyperinflammation, a significant disability associated with COVID-19. Furthermore, pathways that can activate mTOR may be necessary for anti-hepatitis C activity, reduction of influenza A virus replication, and vital for type-1 interferon responses with influenza vaccination. Yet, important considerations for the development of safe and effective antiviral therapy with mTOR pathways exist. Under some conditions, mTOR can act as a double edge sword and participate in virion replication and virion release from cells. Future work with mTOR as a potential antiviral target is highly warranted and with a greater understanding of this novel pathway, new treatments against several viral pathogens may successfully emerge.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL